726 research outputs found

    Analytical Results for Multifractal Properties of Spectra of Quasiperiodic Hamiltonians near the Periodic Chain

    Full text link
    The multifractal properties of the electronic spectrum of a general quasiperiodic chain are studied in first order in the quasiperiodic potential strength. Analytical expressions for the generalized dimensions are found and are in good agreement with numerical simulations. These first order results do not depend on the irrational incommensurability.Comment: 10 Pages in RevTeX, 2 Postscript figure

    Universal statistical properties of poker tournaments

    Get PDF
    We present a simple model of Texas hold'em poker tournaments which retains the two main aspects of the game: i. the minimal bet grows exponentially with time; ii. players have a finite probability to bet all their money. The distribution of the fortunes of players not yet eliminated is found to be independent of time during most of the tournament, and reproduces accurately data obtained from Internet tournaments and world championship events. This model also makes the connection between poker and the persistence problem widely studied in physics, as well as some recent physical models of biological evolution, and extreme value statistics.Comment: Final longer version including data from Internet and WPT tournament

    Persistence exponents for fluctuating interfaces

    Full text link
    Numerical and analytic results for the exponent \theta describing the decay of the first return probability of an interface to its initial height are obtained for a large class of linear Langevin equations. The models are parametrized by the dynamic roughness exponent \beta, with 0 < \beta < 1; for \beta = 1/2 the time evolution is Markovian. Using simulations of solid-on-solid models, of the discretized continuum equations as well as of the associated zero-dimensional stationary Gaussian process, we address two problems: The return of an initially flat interface, and the return to an initial state with fully developed steady state roughness. The two problems are shown to be governed by different exponents. For the steady state case we point out the equivalence to fractional Brownian motion, which has a return exponent \theta_S = 1 - \beta. The exponent \theta_0 for the flat initial condition appears to be nontrivial. We prove that \theta_0 \to \infty for \beta \to 0, \theta_0 \geq \theta_S for \beta 1/2, and calculate \theta_{0,S} perturbatively to first order in an expansion around the Markovian case \beta = 1/2. Using the exact result \theta_S = 1 - \beta, accurate upper and lower bounds on \theta_0 can be derived which show, in particular, that \theta_0 \geq (1 - \beta)^2/\beta for small \beta.Comment: 12 pages, REVTEX, 6 Postscript figures, needs multicol.sty and epsf.st

    A phason disordered two dimensional quantum antiferromagnet

    Full text link
    We examine a novel type of disorder in quantum antiferromagnets. Our model consists of localized spins with antiferromagnetic exchanges on a bipartite quasiperiodic structure, which is geometrically disordered in such a way that no frustration is introduced. In the limit of zero disorder, the structure is the perfect Penrose rhombus tiling. This tiling is progressively disordered by augmenting the number of random "phason flips" or local tile-reshuffling operations. The ground state remains N\'eel ordered, and we have studied its properties as a function of increasing disorder using linear spin wave theory and quantum Monte Carlo. We find that the ground state energy decreases, indicating enhanced quantum fluctuations with increasing disorder. The magnon spectrum is progressively smoothed, and the effective spin wave velocity of low energy magnons increases with disorder. For large disorder, the ground state energy as well as the average staggered magnetization tend towards limiting values characteristic of this type of randomized tilings.Comment: 5 pages, 7 figure

    Anomalous Drude Model

    Full text link
    A generalization of the Drude model is studied. On the one hand, the free motion of the particles is allowed to be sub- or superdiffusive; on the other hand, the distribution of the time delay between collisions is allowed to have a long tail and even a non-vanishing first moment. The collision averaged motion is either regular diffusive or L\'evy-flight like. The anomalous diffusion coefficients show complex scaling laws. The conductivity can be calculated in the diffusive regime. The model is of interest for the phenomenological study of electronic transport in quasicrystals.Comment: 4 pages, latex, 2 figures, to be published in Physical Review Letter

    Contest based on a directed polymer in a random medium

    Full text link
    We introduce a simple one-parameter game derived from a model describing the properties of a directed polymer in a random medium. At his turn, each of the two players picks a move among two alternatives in order to maximize his final score, and minimize opponent's return. For a game of length nn, we find that the probability distribution of the final score SnS_n develops a traveling wave form, Prob(Sn=m)=f(m−vn){\rm Prob}(S_n=m)=f(m-v n), with the wave profile f(z)f(z) unusually decaying as a double exponential for large positive and negative zz. In addition, as the only parameter in the game is varied, we find a transition where one player is able to get his maximum theoretical score. By extending this model, we suggest that the front velocity vv is selected by the nonlinear marginal stability mechanism arising in some traveling wave problems for which the profile decays exponentially, and for which standard traveling wave theory applies

    Self-gravitating Brownian systems and bacterial populations with two or more types of particles

    Full text link
    We study the thermodynamical properties of a self-gravitating gas with two or more types of particles. Using the method of linear series of equilibria, we determine the structure and stability of statistical equilibrium states in both microcanonical and canonical ensembles. We show how the critical temperature (Jeans instability) and the critical energy (Antonov instability) depend on the relative mass of the particles and on the dimension of space. We then study the dynamical evolution of a multi-components gas of self-gravitating Brownian particles in the canonical ensemble. Self-similar solutions describing the collapse below the critical temperature are obtained analytically. We find particle segregation, with the scaling profile of the slowest collapsing particles decaying with a non universal exponent that we compute perturbatively in different limits. These results are compared with numerical simulations of the two-species Smoluchowski-Poisson system. Our model of self-attracting Brownian particles also describes the chemotactic aggregation of a multi-species system of bacteria in biology

    Scaling laws and vortex profiles in 2D decaying turbulence

    Full text link
    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A self-similar scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, as predicted by Carnevale et al., and it is observed that viscous effects spoil this scaling regime. This scaling regime shows some trends toward that of the Kirchhoff model, for which a recent theory predicts a decay exponent Ο=1\xi=1. In terms of scaled variables, the vortices have a similar profile close to a Fermi-Dirac distribution.Comment: 4 Latex pages and 4 figures. Submitted to Phys. Rev. Let

    Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations

    Full text link
    We determine an asymptotic expression of the blow-up time t_coll for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point. We show that t_coll=t_{*}(eta-eta_c)^{-1/2} with t_{*}=0.91767702..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta_c is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the asymptotic expression of the relaxation time close but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point
    • 

    corecore